
Object
orientated
programming
The beginners guide

Preknowlegde required
▪ I will try to explain things as clear as I can. But some preknowledge is required. For

exaple: creating loops and understanding what variables are. Maybe I’ll make a course

about IP (Imperative programming) later. But since this one was requested. I’ll start

with this.

Lesson 1
▪ What are objects and methods?

▪ Setup VSCode

▪ Instances

▪ Arrays

▪ Input/output

▪ toString()

▪ Concentration

Objects and methods

What is an object?
▪ Class Object is the root of the class hierarchy. Every class has Object as a superclass.

All objects, including arrays, implement the methods of this class. ~Java docs

▪ That’s not going to work for us

▪ Our definition: An object in java is a class that has certain state(s) (fields) and

behaviors (methods).

▪ Later we will see why the documentation is more accurate. But for now we use the

informal definition.

What is a method?
▪ Let’s skip over the rest of the definitions and go straight into practicality.

▪ A method will be our functions we are going to define functions later. But if you know

python: a function in python is called a method in java.

▪ A state/fields will be our variables.

Setup VSCode

Setup VSCode
▪ Install VSCode from: https://code.visualstudio.com/download

▪ Since you all study computer science, I expect you are able to install a simple

program without any hassle. Tip on windows: Select “Show in file explorer” option

during the installation. It can safe you so much time.

https://code.visualstudio.com/download

Setup Java
▪ Install JDK: Go to link in the course:

https://www.oracle.com/java/technologies/downloads/

▪ Restart PC (because we can)

▪ Windows (and others) check if it’s added to your PATH!

https://www.oracle.com/java/technologies/downloads/

Setup Java in VSCode
▪ Install some java extentions in VSCode

▪ I don’t know from the top of my head the most important ones but I have the following

installed that might come in handy:

▪ Extension Pack for Java

▪ Java

▪ Debugger for Java

▪ Gradle for Java

▪ Test Runner for Java

▪ Links to each of them can be found on the website

Setup Java
▪ Create a folder called Exercise 1 or download it from the zipped file

▪ Create a filename, for example: exercise1.java

▪ Create a class with the same name as the file

▪ Create a main function

▪ Print hello world!

▪ Pause the video if you want to try it yourself

Setup Java in VSCode
▪ The code you should’ve made is:

public class exercise1 {
 public static void main(String[] args) {
 System.out.println("Hello world");
 }
}

Setup Java in VSCode
▪ The code you should’ve made is:

▪ That should give you an output with: Hello world! In the console

public class exercise1 {
 public static void main(String[] args) {
 System.out.println("Hello world");
 }
}

Setup Java in VSCode
▪ The code you should’ve made is:

▪ That should give you an output with: Hello world! In the console

▪ What in this code is the object? What is the method and what are the states? Quiz

question 3-6

public class exercise1 {
 public static void main(String[] args) {
 System.out.println("Hello world");
 }
}

Setup Java in VSCode
▪ I’m not going to cover troubleshooting here. But in short if it doesn’t work:

▪ Is Java set in your PATH? And did you restart the PC after adding it to your PATH?

▪ Did you install all extensions on VSCode? Do you maybe need some other as well?

▪ Did you instal JDK and not JRE?

Constructor

What is the constructor?
▪ It’s to pass variables into a class

What is the constructor?
▪ How to create one?

▪ Let’s say we have the

following code:

▪ Then this will do nothing

usefull yet.

▪ But it might be fun to

see what the result is.

So try it for yourself

public class example {
// example represents a post-it Note
private String text; // the text on the post-it note
private String color;

public static void main(String[] args) {
example postIt = new example();
System.out.println(postIt);

}
}

example.java

What is the constructor?
▪ But first… some technical terms

▪ This code creates a class called

“example” which we interpered as

“post_it”

▪ Then we created two fields

▪ ‘text’ – private String

▪ ‘color’ – private String

public class example {
// example represents a post-it Note
private String text; // the text on the post-it note
private String color;

public static void main(String[] args) {
example postIt = new example();
System.out.println(postIt);

}
}

example.java

What is the constructor?
▪ We saw that we had to define

types before in C++, but what is

‘example’?

▪ It means that the class example can

be interpered as a type. (Practically

(official name is a reference type))

▪ A ‘new’ variable made of that type

is called an instance

public class example {
// example represents a post-it Note
private String text; // the text on the post-it note
private String color;

public static void main(String[] args) {
example postIt = new example();
System.out.println(postIt);

}
}

example.java

What is the constructor?
▪ Now what is a the constructor?

▪ It starts with public

▪ Followed directly with the name of

the class (so no type)

▪ Meaning we get a result like:

public class example {
// example represents a post-it Note
private String text; // the text on the post-it note
private String color;

public static void main(String[] args) {
example postIt = new example();
System.out.println(postIt);

}
}

example.java

What is the constructor?
▪ Now what is a the constructor?

▪ It starts with public

▪ Followed directly with the name of

the class (so no type)

▪ Meaning we get a result like:

public class example {
// example represents a post-it Note
private String text; // the text on the

post-it note
private String color;

public example(){
// more code

}
public static void main(String[] args) {

example postIt = new example();
System.out.println(postIt);

}
}

example.java

What is the constructor?
▪ I know right. Really hard to

make.

▪ So how to make it that we can

create an actual post-it inside

our main function?

▪ We add the magic of “parameters”

public class example {
// example represents a post-it Note
private String text; // the text on the post-it note
private String color;

public example(){
// more code

}
public static void main(String[] args) {

example postIt = new example();
System.out.println(postIt);

}
}

example.java

What is the constructor?
▪ I know right. Really hard to

make.

▪ So how to make it that we can

create an actual post-it inside

our main function?

▪ We add the magic of “parameters”

public class example {
 // example represents a post-it Note
 private String text; // the text on the post-it note
 private String color;

 public example(String textInput, String colorInput){
 // more code
 }
 public static void main(String[] args) {
 example postIt = new example();
 System.out.println(postIt);
 }
}

example.java

What is the constructor?
▪ I know right. Really hard to

make.

▪ So how to make it that we can

create an actual post-it inside

our main function?

▪ We add the magic of “parameters”

▪ And then add assignments

public class example {
 // example represents a post-it Note
 private String text; // the text on the post-it note
 private String color;

 public example(String textInput, String colorInput){
 // more code
 }
 public static void main(String[] args) {
 example postIt = new example();
 System.out.println(postIt);
 }
}

example.java

What is the constructor?
▪ I know right. Really hard to

make.

▪ So how to make it that we can

create an actual post-it inside

our main function?

▪ We add the magic of “parameters”

▪ And then add assignments

public class example {
 // example represents a post-it Note
 private String text; // the text on the post-it note
 private String color;

 public example(String textInput, String colorInput){
 text = textInput;
 color = colorInput;
 }
 public static void main(String[] args) {
 example postIt = new example("OOP with Thijmen almost looks
"Green");
 System.out.println(postIt);
 }
}

example.java

ToString

Are you still mad?
▪ We wrote this amazing looking code. But when we run it we get something like:

▪ example@372f7a8d

▪ So what happens?

▪ We try to print an object. But the compiler/Java does not know how to format that

object to a String. Meaning we have to do that for Java.

▪ We can do this by overriding the main toString method. And how to do that?

▪ Simply create a function/method called: toString

toString
▪ We don’t need to

specifiy @override

since we haven’t

covered it yet.

▪ Adding this to our class does make it more readable when ran.

public String toString(){
return "Post-it text:\n" + text + "\nColor: " + color + "";

}

example.java

toString
▪ So how does our complete code looks like?

▪ All that for a simple post-it system that

isn’t even that modifyable (no getters/

setters).

public class example {
 // example represents a post-it Note
 private String text; // the text on the
post-it note
 private String color;

 public example(String textInput, String
colorInput){
 text = textInput;
 color = colorInput;
 }

 public String toString(){
 return "Post-it text:\n" + text +
"\nColor: " + color + "";
 }

 public static void main(String[] args) {
 example postIt = new example("OOP with
Thijmen almost looks fun!", "Green");
 System.out.println(postIt);
 }
}

example.java

Encapsulation

What is the encapsulation?
▪ They talked a about it in the lectures, thus so do I.

▪ It means untill now: *Hold on to your chairs*

▪ Use getters and setters

▪ Use private if possible

Getters and setters
▪ This actually is quite important in OOP

▪ Getters give you a private variable, without directly accessing that specific variable

from the outside. Also don’t make getters for variables that don’t need to be read. This

makes sure that outsiders can’t get the information of private variables.

▪ Setters set the private variable, without directly accesssing that specific variable from

the outside. Also don’t make setters for variables that don’t need to be changed.

Getters and setters
▪ How do they look like?

▪ First let’s define what we want to model:

▪ Be able to add/change the text on the post-it

▪ Be able to read the text on the post-it

▪ You are not able to change to color of the post-it

▪ You are able to see what the color of the post-it is

▪ These restrictions mean we can alter the post-it code such that it looks like:

Getters and setters
public class example2 {
 // example represents a post-it Note
 private String text; // the text on the post-it note
 private String color;

 public example2(String colorInput){
 color = colorInput;
 }

 public String toString(){
 return "Post-it text:\n" + text + "\nColor: " + color + "";
 }

 public static void main(String[] args) {
 example2 postIt = new example2("Green");
 System.out.println(postIt);
 }
}

Getters and setters
▪ A getter is nothing more than just returning the current variable.

▪ Meaning a getter for ‘text’ and ‘color’ will look like:

public String getText(){
return text;

}

public String getColor(){
return color;

}

Getters and setters
▪ A setter is nothing more than updating the variable:

public void setText(String textInput){
 text = textInput;
 }

Getters and setters
▪ A tip I might give. If things are like a counter. Don’t use something like:

▪ object.setAmount(object.getAmount() + 1);

▪ But rather:

▪ object.increaseAmount(1);

▪ Meaning you are allowed to change getters and setters if you see fit.

▪ The first one is not wrong, but can get quite complex fast.

Getters and setters
▪ Now we can change the

main function to make sure

it uses getters and setters.

▪ A toString function is better

but for illustration purposes we

use it like this.

public static void main(String[] args) {
 example2 postIt = new example2("Green");
 postIt.setText("OOP From Thijmen is amazing!");
 System.out.println("Text: " + postIt.getText() + " | Color: " + postIt.getColor());
 }

Static and dynamic

Fields
▪ Static fields are independent of the object.

▪ There can only be one per class

Methods
▪ Static methods are independend of any object

▪ Cannot access instance fields or methods

Some remarks until now

Before we continue
▪ Before we continue, I do have some terminology remarks. And a small overview of what we covered

untill now.

▪ A String in java is not a primitive, and uses the ‘+’ to concatanate two strings.

▪ A class as type is called a reference type

▪ A boolean, integer, float, double, etc. is called a primitive type.

▪ Methods may change the values of the fields

▪ Constructors invoked implicitly via new to create an instance of a class

▪ Fields typically initialized by the constructor

▪ Static fields shared by all objects of a class

▪ Static methods cannot access instance fields

Arrays

Array
▪ An array is an ordered list of variables of the same type. It’s ordered and thus not

sorted

▪ Initializing an array can be done in multiple ways:

▪ My recomendation is to use the first way if it has to be sort of dynamic (you change

values) and the last one if you store constants (of course use the conventional CAPS))

double[] temperature = new double[3];
double[] temperature = new double[3] { 3.3, 15.8, 9.7 };
double[] temperature = { 3.3, 15.8, 9.7 };

Array
▪ You can get the length of an array via the length attribute

▪ And access it via for loops in 2 ways (second one is recomendation for starters)

int[] array = { 1,2,3 };
 int total1 = 0;
 int total2 = 0;
 // add each element's value to total. Read-only access, readable
 for (int number : array) {
 total1 += number;
 }
 // add each element's value to total. less readable
 for (int j = 0; j < array.length; j++) {
 total2 += array[j];
 }
 System.out.println("Total of array elements: " + String.valueOf(total1));
 System.out.println("Total of array elements: " + String.valueOf(total2));

Java input and ouput

I/O in Java
▪ Use a single class for all Input and Output in Java

▪ Use the Java Scanner for the input.

End of lecture 1

	Dia 1: Object orientated programming
	Dia 2: Preknowlegde required
	Dia 3: Lesson 1
	Dia 4: Objects and methods
	Dia 5: What is an object?
	Dia 6: What is a method?
	Dia 7: Setup VSCode
	Dia 8: Setup VSCode
	Dia 9: Setup Java
	Dia 10: Setup Java in VSCode
	Dia 11: Setup Java
	Dia 12: Setup Java in VSCode
	Dia 13: Setup Java in VSCode
	Dia 14: Setup Java in VSCode
	Dia 15: Setup Java in VSCode
	Dia 16: Constructor
	Dia 17: What is the constructor?
	Dia 18: What is the constructor?
	Dia 19: What is the constructor?
	Dia 20: What is the constructor?
	Dia 21: What is the constructor?
	Dia 22: What is the constructor?
	Dia 23: What is the constructor?
	Dia 24: What is the constructor?
	Dia 25: What is the constructor?
	Dia 26: What is the constructor?
	Dia 27: ToString
	Dia 28: Are you still mad?
	Dia 29: toString
	Dia 30: toString
	Dia 31: Encapsulation
	Dia 32: What is the encapsulation?
	Dia 33: Getters and setters
	Dia 34: Getters and setters
	Dia 35: Getters and setters
	Dia 36: Getters and setters
	Dia 37: Getters and setters
	Dia 38: Getters and setters
	Dia 39: Getters and setters
	Dia 40: Static and dynamic
	Dia 41: Fields
	Dia 42: Methods
	Dia 43: Some remarks until now
	Dia 44: Before we continue
	Dia 45: Arrays
	Dia 46: Array
	Dia 47: Array
	Dia 48: Java input and ouput
	Dia 49: I/O in Java
	Dia 50: End of lecture 1

